Complications of diabetes mellitus

Assist.Prof. Sathit Niramitmahapanya, MD Endocrinology and metabolism unit of Rajavithi Hospital

Complications of diabetes mellitus

* Acute complications:

- * Ketoacidosis
- * Hyperglycemic hyperosmolar nonketotic syndrome
- Hypoglycemia

* Chronic complications:

- * Disorders of the microcirculation
 - * Neuropathies
 - * Nephropathies
 - * Retinopathies
- Macrovascular complications
- Foot ulcers

Diabetic ketoacidosis (DKA)

- * Ketone production by the liver exceeds cellular use and renal excretion.
- * Most commonly occurs in type 1 diabetes, lack of insulin leads to mobilization of fatty acids from adipose tissue, increase in fatty acid levels leads to ketone production by the liver.
- * Stress increases the release of gluconeogenic hormones.
- * DKA often is preceded by physical or emotional stress, such as infection, pregnancy, or extreme anxiety.
- * In clinical practice, ketoacidosis also occurs with the omission or inadequate use of insulin.

Diabetic ketoacidosis (DKA)

*The three major metabolic derangements in DKA are: ***Hyperglycemia *Ketosis *Metabolic acidosis**

Diabetic ketoacidosis (DKA)

- * The definitive diagnosis consists of
 - * hyperglycemia (blood glucose levels >250 mg/dL)
 - * low bicarbonate (<15 mEq/L) and low pH (<7.3)
 - * ketonemia (positive at 1:2 dilution) and moderate ketonuria.
- * Hyperglycemia leads to osmotic diuresis, dehydration, and a critical loss of electrolytes.
- * Hyperosmolality \rightarrow Extracellular sodium concentration frequently is low or normal despite enteric water losses because of the intracellular-extracellular fluid shift. This dilutional effect is referred to as *pseudohyponatremia*.
- * Serum potassium levels may be normal or elevated.
- * Metabolic acidosis is caused by the excess ketoacids.

Manifestations

- * Typically history of 1 or 2 days of polyuria, polydipsia, nausea, vomiting, and marked fatigue \rightarrow stupor \rightarrow coma.
- * Abdominal pain and tenderness may be present without abdominal disease. (glucose waste product)
- The breath has a characteristic smell because of the presence of the volatile ketoacids. The rate and depth of respiration increase (*i.e.*, Kussmaul's respiration) as the body attempts to prevent further decreases in pH
- * Hypotension may be present because of a decrease in blood volume.

Treatment

- * The goals in treating DKA are:
 - * To improve circulatory volume and tissue perfusion
 - * To decrease serum glucose
 - * To correct the acidosis and electrolyte imbalances
- * Accomplished through the administration of insulin and intravenous fluid and electrolyte replacement solutions.
- * Identification and treatment of the underlying cause.

The hyperglycemic hyperosmolar nonketotic (HHNK) syndrome

* HHNK is characterized by

- * Hyperglycemia (blood glucose >600 mg/dL),
- * Hyperosmolarity (plasma osmolarity >310 mOsm/L) and dehydration
- * Absence of ketoacidosis
- * Depression of the sensorium.
- * It is seen most frequently in people with type 2 diabetes.
- * Two factors appear to contribute to the hyperglycemia that precipitates the condition:
 - * An increased resistance to the effects of insulin
 - * An excessive carbohydrate intake.

The hyperglycemic hyperosmolar nonketotic (HHNK) syndrome

- * The most prominent **manifestations** are dehydration:
 - * Neurologic signs and symptoms:
 - * Generalized seizures
 - * Hemiparesis
 - * Aphasia
 - * Muscle fasciculations
 - * Hyperthermia
 - * Visual field loss
 - * Nystagmus
 - * Visual hallucinations
 - * Excessive thirst
- * The onset of HHNK syndrome often is insidious, and because it occurs most frequently in older people, it may be mistaken for a stroke.

Treatment

- * The goals of treatment are same as DKA but need more intensive circulatory volume.
- * Judicious medical observation and care because water moves \rightarrow brain cells during treatment \rightarrow cerebral edema.
- * Extensive K+ losses occurred during the diuretic phase of the disorder require correction.

Hypoglycemia

* Hypoglycemia

 \rightarrow relative excess of insulin in the blood and is characterized by below-normal blood glucose levels.

- * It occurs most commonly with insulin injections and some oral hypoglycemic agents (*i.e.*, beta cell stimulators).
- * Many factors precipitate an insulin reaction in a person with type 1 diabetes, including:
 - * Error in insulin dose
 - * Failure to eat
 - Increased exercise
 - * Decreased insulin need after removal of a stress situation
 - * Medication changes and a change in insulin site
- * Alcohol decreases liver gluconeogenesis, and people with diabetes need to be cautioned about its potential for causing hypoglycemia.

Hypoglycemia

- * Brain function relies on blood glucose (energy source)
- * Hypoglycemia produces behaviors related to altered cerebral function:
 - * Headache
 - * Difficulty in problem solving
 - * Disturbed or altered behavior
 - * Coma
 - * Seizures
- * At the onset of the hypoglycemic episode, activation of the parasympathetic nervous system often causes hunger \rightarrow if not corrected \rightarrow parasympathetic response is followed by activation of the sympathetic nervous system; this causes anxiety, tachycardia, sweating, and constriction of the skin vessels (*i.e.*, the skin is cool and clammy).

Treatment

- * The most effective treatment
 - * Immediate ingestion of a concentrated carbohydrate source, such as sugar, honey, candy, or orange juice. (Rule of 15)
- * Alternative methods when the person having the reaction is unconscious or unable to swallow:
 - * Glucagon may be given intramuscularly or subcutaneously.
 - * In situations of severe or life-threatening hypoglycemia, it may be necessary to administer glucose intravenously.

Chronic complications

- * These disorders occur in the insulin-independent tissues of the body tissues that do not require insulin for glucose entry into the cell→ intracellular glucose concentrations in many of these tissues approach or equal those in the blood.
- * Chronic complications can be reduced by intensive diabetic treatment.

Peripheral neuropathies

- * Two types of pathologic changes with diabetic peripheral neuropathies.
 - * The first is a thickening of the walls of the nutrient vessels that supply the nerve, leading to the assumption that vessel ischemia plays a major role in the development of these neural changes.
 - * The second finding is a segmental demyelinization process that affects the Schwann cell. This demyelinization process is accompanied by a slowing of nerve conduction.
- * The clinical manifestations of the diabetic peripheral neuropathies vary with the location of the lesion.

Classification of diabetic peripheral neuropathies

* Somatic:

- Polyneuropathies (bilateral sensory)
 - Paresthesias, including numbress and tingling
 - Impaired pain, temperature, light touch, two-point discrimination, and vibratory sensation
 - * Decreased ankle and knee-jerk reflexes
- * Mononeuropathies
 - Involvement of a mixed nerve trunk that includes loss of sensation, pain, and motor weakness.
- * Amyotrophy
 - Associated with muscle weakness, wasting, and severe pain of muscles in the pelvic girdle and thigh.

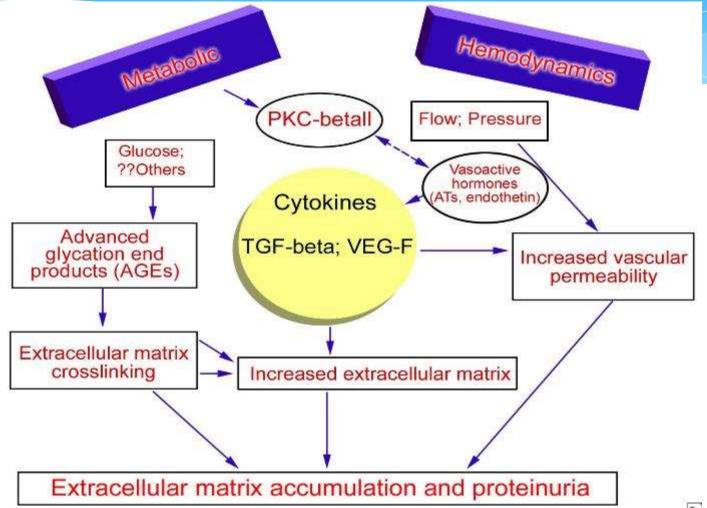
Autonomic:

- Impaired vasomotor function
 - * Postural hypotension
- * Impaired gastrointestinal function
 - * Gastric atony
 - * Diarrhea, often postprandial and nocturnal
- Impaired genitourinary function
 - * Paralytic bladder
 - Incomplete voiding
 - * Impotence
 - * Retrograde ejaculation
- * Cranial nerve involvement
 - * Extraocular nerve paralysis
 - * Impaired pupillary responses
 - * Impaired special senses

Diabetic nephropathy

* Diabetic nephropathy

- * Cause of end-stage renal disease, accounting for 40%-50% of new cases.
- * The term *diabetic nephropathy* is used to describe the combination of lesions that often occur concurrently in the diabetic kidney → Glomerular changes may occur, including capillary basement membrane thickening, diffuse glomerular sclerosis, and nodular glomerulosclerosis.
- * Among the suggested risk factors for diabetic nephropathy are:
 - * Genetic and familial predisposition
 - * Elevated blood pressure
 - * Poor glycemic control
 - * Smoking
 - * Hyperlipidemia
 - * Microalbuminuria


Pathogenesis

- * Hyperglycemia increases the expression of transforming growth factorbeta (TGF-beta) in the glomeruli and of matrix proteins specifically stimulated by this cytokine. TGF-beta may contribute to the cellular hypertrophy and enhanced collagen synthesis observed in persons with diabetic nephropathy→ renal hemodynamic alterations, patients with overt diabetic nephropathy (dipstick-positive proteinuria and decreasing GFR) generally develop systemic hypertension.
- * Hypertension is an adverse factor in all progressive renal diseases and seems especially so in diabetic nephropathy. The deleterious effects of hypertension are likely directed at the vasculature and microvasculature.
- * Familial or perhaps even genetic factors also play a role.
 - * Certain ethnic groups, particularly African Americans, persons of Hispanic origin, and American Indians, may be particularly disposed to renal disease as a complication of diabetes.

- * The exact cause of diabetic nephropathy is unknown, but various postulated mechanisms are:
 - * Hyperglycemia (causing hyperfiltration and renal injury)
 - * Advanced glycosylation products
 - * Activation of cytokines

Pathogenesis

-

Retinopathies

- Retinopathy is the most common pattern of eye disease.
- * Diabetic retinopathy is characterized by
 - * abnormal retinal vascular permeability
 - * microaneurysm formation
 - * neovascularization
 - * hemorrhage, scarring, and retinal detachment.
- * Risk factors associated with diabetic retinopathy are poor glycemic control, elevated blood pressure, and hyperlipidemia.
- * Diabetes is important for regular dilated eye examinations.
- * Another condition called macular edema → damaged blood vessels leak fluid and lipids onto the macula, the part of the retina. The fluid makes the macula swell, which blurs vision.

Pathogenesis

- * Diabetic retinopathy \rightarrow microvascular retinal changes.
- * These damages change the formation of the blood-retinal barrier and also make the retinal blood vessels become more permeable.
- * The lack of oxygen in the retina causes fragile, new, blood vessels to grow along the retina and in the clear, gel-like vitreous humour that fills the inside of the eye.
- Without timely treatment, these new blood vessels can bleed, cloud vision, and destroy the retina.
 Fibrovascular proliferation can also cause tractional retinal detachment.
- * The new blood vessels can also grow into the angle of the anterior chamber of the eye and cause neovascular glaucoma.

Macrovascular complications

- * Diabetes mellitus is a major risk factor for coronary artery disease, cerebrovascular disease, and peripheral vascular disease.
- * Multiple risk factors for vascular disease
 - * obesity, hypertension, hyperglycemia, hyperlipidemia, altered platelet function, and elevated fibrinogen levels.
- * In people with type 2 diabetes, macrovascular disease may be present at the time of diagnosis.
- * In type 1 diabetes, the attained age and the duration of diabetes appear to correlate with the degree of macrovascular disease.

Diabetic foot ulcers

* Approximately

- * 60% to 70% of people with diabetic foot ulcers have neuropathy without vascular disease,
- * 15% to 20% have vascular disease,
- * 15% to 20% have neuropathy and vascular disease.
- * Distal symmetric neuropathy is a major risk factor for foot ulcers.
- * Unaware of the constant trauma to the feet caused by poorly fitting shoes, improper weight bearing or infections.
- * Motor neuropathy with weakness of the intrinsic muscles of the foot may result in foot deformities, which lead to focal areas of high pressure \rightarrow a foot ulcer.
- * Common sites of trauma are the back of the heel, the plantar metatarsal area, or the great toe, where weight is borne during walking.

Infections

- * Certain types of infections occur with increased frequency in people with diabetes:
 - * Soft tissue infections of the extremities
 - * Osteomyelitis
 - * Urinary tract infections and pyelonephritis
 - * Candidal infections of the skin and mucous surfaces
 - * Dental caries and infections
 - * Tuberculosis
- * Suboptimal response to infection in a person with diabetes is caused by the presence of chronic complications, such as vascular disease and neuropathies, and by the presence of hyperglycemia and altered neutrophil function.
- * Hyperglycemia and glycosuria may influence the growth of microorganisms and increase the severity of the infection.